

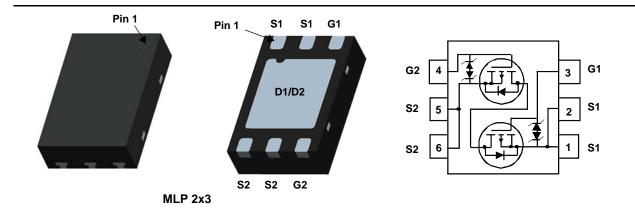
March 2013

FDMB2308PZ

Dual Common Drain P-Channel PowerTrench® MOSFET -20 V, -7 A, 36 m Ω

Features

- Max $r_{S1S2(on)}$ = 36 m Ω at V_{GS} = -4.5 V, I_D = -5.7 A
- Max $r_{S1S2(on)}$ = 50 m Ω at V_{GS} = -2.5 V, I_D = -4.6 A
- Low Profile 0.8 mm maximum in the new package MicroFET 2x3 mm
- HBM ESD protection level 2.8 kV (Note 3)
- RoHS Compliant



General Description

This device is designed specifically as a single package solution for Li-Ion battery pack protection circuit and other ultra-portable applications. It features two common drain P-channel MOSFETs, which enables bidirectional current flow, on Fairchild's advanced PowerTrench® process with state of the art MircoFET Leadframe, the FDMB2308PZ minimizes both PCB space and $r_{\rm S1S2(on)}.$

Application

■ Li-Ion Battery Pack

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{S1S2}	Source1 to Source2 Voltage			-20	V
V_{GS}	Gate to Source Voltage			±12	V
1	Source1 to Source2 Current -Continuous	T _A = 25 °C	(Note 1a)	-7	^
I _{S1S2}	-Pulsed			-30	A
D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.2	W
P_{D}	Power Dissipation	T _A = 25 °C	(Note 1b)	0.8	VV
T _J , T _{STG}	Operating and Storage Junction Temperature I	Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	57	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	161	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
308	FDMB2308PZ	MLP 2x3	7"	8 mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Characteristics						
I _{S1S2}	Zero Gate Voltage Source1 to Source2 Current	V _{S1S2} = -16 V, V _{GS} = 0 V			-1	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±12 V, V _{S1S2} = 0 V			±10	μА

On Characteristics

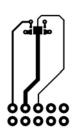
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{S1S2}, I_{S1S2} = -250 \mu A$	-0.6	-0.9	-1.5	V
		$V_{GS} = -4.5 \text{ V}, I_{S1S2} = -5.7 \text{ A}$		27	36	
	Static Source1 to Source2 On Resistance	V _{GS} = -2.5 V, I _{S1S2} = -4.6 A		36	50	mΩ
r _{S1S2(on)}	Static Source Fito Source2 Off Nesistance	V_{GS} = -4.5 V, I_{S1S2} = -5.7 A, T_J = 125 °C		35	49	11152
9 _{FS}	Forward Transconductance	V _{S1S2} = -5 V, I _{S1S2} = -5.7 A		29		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 10.V.V 0.V	2280	3030	pF
C _{oss}	Output Capacitance	$V_{S1S2} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$	361	540	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1/11/2	339	510	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		14	25	ns
t _r	Rise Time	V _{S1S2} = -10 V, I _{S1S2} = -5.7 A	33	52	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω	74	118	ns
t _f	Fall Time		58	93	ns
Q_g	Total Gate Charge	$V_{GS} = -4.5 \text{ V}, V_{S1S2} = -10 \text{ V},$	22	30	nC
Q_{gs}	Gate to Source Charge	I _{S1S2} = -5.7 A	3.6		nC
Q_{gd}	Gate to Drain "Miller" Charge		7.7		nC


Source1- Source2 Diode Characteristics

I _{fss}	Maximum Continuous Source1-Source2 Diode Forward Current			-5.7	Α
V _{fss}	Source1 to Source2 Diode Forward Voltage $V_{G1S 1} = 0 \text{ V}, V_{G2S2} = -4.5 \text{ V}, V_{G1S} = -5.7 \text{ A}$ (N	Note 2)	-1	-1.6	V

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 57 °C/W when mounted on a 1 in2 pad of 2 oz copper

b. 161 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 $\mu\text{s},$ Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics T_J = 25 °C unless otherwise noted

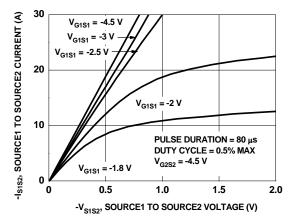


Figure 1. On-Region Characteristics

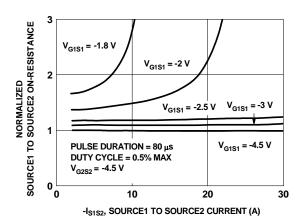


Figure 3. Normalized On-Resistance vs Junction Temperature

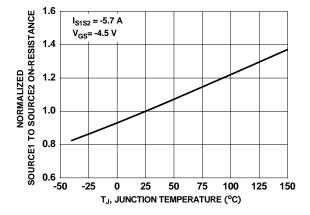


Figure 5. Normalized On Resistance vs Junction Temperature

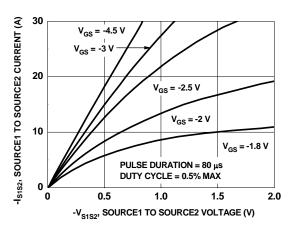


Figure 2. On-Region Characteristics

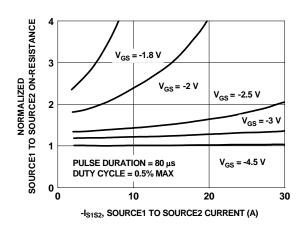


Figure 4. Normalized On-Resistance vs Junction Temperature

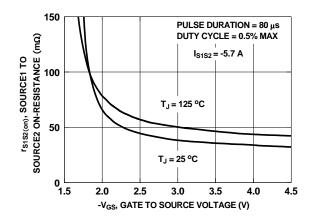


Figure 6. On Resistance vs Gate to Source Voltage

Typical Characteristics T_J = 25 °C unless otherwise noted

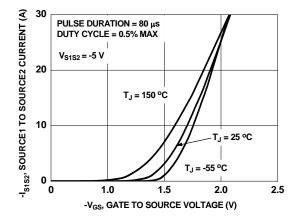


Figure 7. Transfer Characteristics

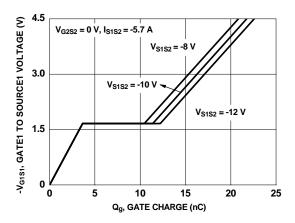


Figure 9. Gate Charge Characteristics

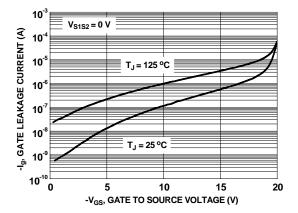


Figure 11. Gate Leakage Current vs Gate to Source Voltage

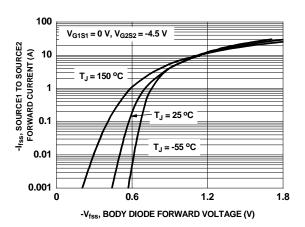


Figure 8. Source1 to Source2 Diode Forward Voltage vs Source Current

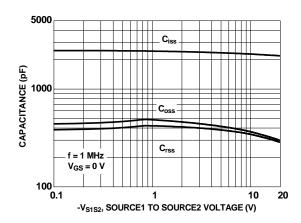


Figure 10. Capacitance vs Source1 to Source2 Voltage

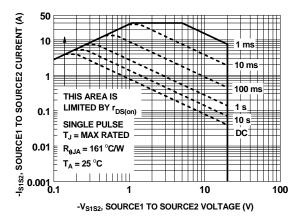


Figure 12. Forward Bias Safe Operating Area

Typical Characteristics $T_J = 25$ °C unless otherwise noted

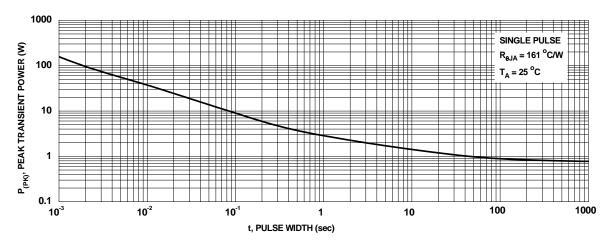
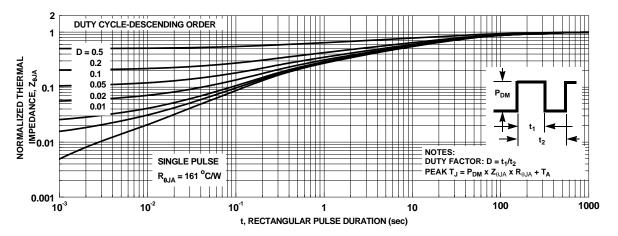
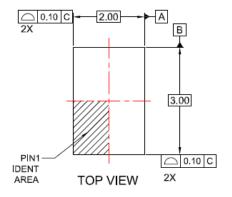
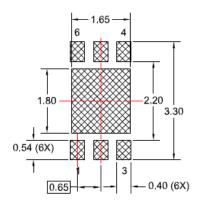
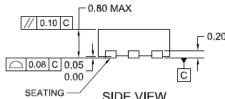


Figure 13. Single Pulse Maximum Power Dissipation


Figure 14. Junction-to-Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

0,20 SIDE VIEW

1,60 1,50 PIN1 IDENT 1.85 1.75 0.40 0.30 (6X) 0.10M C A B 0.05M C Φ 0.35 0.25 (6X) 0.20 (4X) 0.65

BOTTOM VIEW

NOTES:

- A. PACKAGE CONFORMS TO JEDEC MO-229 EXCEPT WHERE NOTED,
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- D. LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ FPS™ AccuPower™ F-PFS™ AX-CAP® FRFET®

Global Power ResourceSM BitSiC™ Build it Now™ Green Bridge™ CorePLUS™ Green FPS™

CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ Gmax™

GTO™ CTL™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™

Dual Cool™ Marking Small Speakers Sound Louder

EcoSPARK® and Better™ MegaBuck™ EfficentMax™ ESBC™ MICROCOUPLER™ MicroFET™

MicroPak™ MicroPak2™ Fairchild[®] MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver™ FACT[®]

FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

(1)_® PowerTrench® PowerXS™

Programmable Active Droop™

QFET® QSTM Quiet Series¹ RapidConfigu

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET®

SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

SYSTEM®' TinvBoost^T TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC®

TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164